Sécurité aérienne : une piste pour détecter les turbulences avec des lasers

En novembre 2001, un Airbus A300 d’American Airlines parti de New York s’est écrasé deux minutes après le décollage….

Partager sur:
Sauvegarder cet article
Aimer cet article 1
Source : Flickr

La liberté d’expression n’est pas gratuite!

Mais déductible à 66% des impôts

N’oubliez pas de faire un don !

Faire un don

Sécurité aérienne : une piste pour détecter les turbulences avec des lasers

Publié le 27 décembre 2023
- A +

Les auteurs : Olivier Emile, enseignant chercheur en physique, Université de Rennes. Janine Emile, professeur en physique, Université de Rennes

 

En novembre 2001, un Airbus A300 d’American Airlines parti de New York s’est écrasé deux minutes après le décollage, provoquant la mort des 260 personnes à bord. C’était peu de temps après les attentats aériens du World Trade Center, mais cette fois, l’accident avait des causes bien différentes : des turbulences de sillages, c’est-à-dire des structures tourbillonnantes fortes générées par le passage des avions, ce jour-là créées par un Boeing 747 de Japan Airlines qui avait décollé peu auparavant.

Plus récemment, un avion d’affaire Bombardier Challenger 604 a subi une chute de 3000 mètres dans le sillage d’un A380. Plusieurs passagers ont été blessés et l’intérieur de l’avion a été détruit. Si des incidents sans gravité sont assez fréquents (un par mois), des accidents sérieux surviennent en moyenne tous les deux ans.

En plus d’être responsables de plusieurs catastrophes aériennes, elles sont un frein au développement aérien. En effet, afin de limiter leurs effets, un délai de sécurité arbitraire est imposé entre chaque avion au décollage et à l’atterrissage. Une distance de sécurité minimale doit aussi être respectée en vol – distance que n’ont probablement pas respecté Maverick et Goose dans Top Gun, perdant ainsi le contrôle de leur F-14.

Détecter directement ces turbulences de sillage et leur évolution pourrait permettre de réduire considérablement ces délais et distances, et d’optimiser la fréquentation des pistes des aéroports – renforçant la sécurité aérienne et réduisant les coûts d’utilisation. Malheureusement, arriver à caractériser complètement un tourbillon, surtout un tourbillon gazeux, est assez difficile.

Si, dans le registre fictionnel, les chasseurs de tornades de Twisters avaient dû sacrifier une voiture, au péril de leurs vies, pour que des billes puissent être aspirées par la tornade et ainsi permettre, par leur écho électromagnétique, de caractériser complètement la tornade, dans la réalité, ce sont des avions avec un équipage qui vont collecter les informations au cœur des dépressions, dans des conditions évidemment très difficiles.

Pour éviter ces dangers, nous cherchons à développer un dispositif capable de sonder à distance ces tourbillons. Un tel dispositif pourrait aussi avoir un intérêt pour l’astronautique, en météorologie, mais aussi pour caractériser des sillages des éoliennes, si dangereux pour les oiseaux et qui peuvent s’étendre sur plusieurs centaines de mètres.

Nous proposons dans notre étude récente d’exploiter un phénomène physique, l’effet Doppler rotationnel, pour mesurer la vitesse et l’évolution de ces tourbillons. Ceci pourrait se faire à relativement faible coût puisque cela nécessite l’emploi d’un simple laser et d’un détecteur, et serait adaptable aux sillages des éoliennes et à la mesure de tornades.

 

L’effet Doppler rotationnel

L’effet Doppler « usuel » est relatif au décalage en fréquence d’une onde (acoustique ou électromagnétique) lorsque l’émetteur et le récepteur sont en mouvement l’un par rapport à l’autre. Ce décalage est proportionnel à la vitesse relative entre eux. Il est utilisé notamment pour détecter les excès de vitesse par la maréchaussée, en utilisant des ondes radio ou optiques. Il est aussi utilisé en médecine, entre autres, pour la mesure des flux dans les vaisseaux sanguins, à l’aide, cette fois-ci, d’une onde acoustique.

Il existe aussi un effet Doppler rotationnel, moins connu, qui est le pendant de l’effet Doppler usuel pour des objets en rotation. Philéas Fogg s’en est bien aperçu dans Le Tour du monde en quatre-vingts jours. En effet, la période du voyage, normalement de 80 jours, a été modifiée par la rotation propre de la Terre. Suivant le sens de parcours du tour du monde, cette période passe à 79 ou 81 jours.

Cela peut aussi se comprendre, à des temps plus courts, en regardant une horloge posée sur un tourne-disque en rotation. L’horloge ne tourne pas à la même vitesse si l’on se place sur le tourne-disque ou dans la pièce dans laquelle il est placé.

Pour pouvoir utiliser l’effet Doppler rotationnel avec des ondes, celles-ci doivent « tourner ». Ce n’est pas le cas avec les ondes habituelles (planes). Par contre, il existe des ondes qui ressemblent aux pâtes italiennes fusilli, et qui tournent à une vitesse proportionnelle à la fréquence de l’onde. Elles sont appelées ondes à moment angulaire orbital ou OAM en anglais.

La lumière rétrodiffusée par des objets en rotation ne tourne plus. Elle n’a plus la forme d’un fusilli. De plus, elle se trouve être décalée en fréquence d’une quantité proportionnelle à la fréquence de rotation de l’objet et aux caractéristiques du fusilli. En mesurant ce décalage, il est possible de mesurer la vitesse de rotation du tourbillon.

 

Sonder à distance les tourbillons

Notre équipe travaille depuis quelques années sur les ondes fusilli, leur génération, leur détection et leur utilisation pour faire tourner des objets à l’aide de la lumière.

Nous avons récemment réussi à complètement caractériser un tourbillon liquide « modèle » généré par un agitateur magnétique dans un récipient, en utilisant des ondes optiques en forme de fusilli générées par un laser, et en étudiant la fréquence de la lumière diffusée par l’eau du tourbillon.

Le décalage Doppler rotationnel de la lumière diffusée par le liquide en rotation permet de remonter à la distribution des vitesses dans le tourbillon.

En particulier, nous avons mesuré la distribution des vitesses angulaires à l’intérieur du tourbillon et, en même temps, nous pouvons effectuer une cartographie dans l’axe du tourbillon. En d’autres termes, nous pouvons connaître la distribution des vitesses de rotation du tourbillon en trois dimensions.

Actuellement, en laboratoire, nous essayons de reprendre cette expérience sur un tourbillon gazeux généré par une dépression avant d’effectuer ces expériences en situation réelle.

 

Vous pouvez retrouver cet article sur The Conversation

Voir les commentaires (0)

Laisser un commentaire

Créer un compte

La liberté d’expression n’est pas gratuite!

Mais déductible à 66% des impôts

N’oubliez pas de faire un don !

Faire un don
4
Sauvegarder cet article

Le maréchal Rommel, vite débordé par les Alliés en Normandie, l’avait déjà noté voilà 80 ans : la supériorité aérienne est essentielle aux opérations de haute intensité ; pourtant, la guerre de l’Ukraine relancée en février 2022 (après le gel de son « opération antiterroriste » contre les républiques russophones en 2014) a fait mentir cet adage. Ou plutôt, les vagues de chasseurs et de bombardiers qu’on voyait assombrir le ciel de la Seconde Guerre mondiale à la guerre du Golfe y sont remplacées par des nuées de microdrones et des volées de m... Poursuivre la lecture

1
Sauvegarder cet article

Pour Boeing, la série noire est sans fin.

Un vol Air France atterrit en urgence au Nunavut à cause d’une odeur de brûlé, dérapage incontrôlé à l’aéroport de Dakar, frein d’atterrissage qui ne sort pas à l’aéroport d’Istanbul, aux États-Unis un capot qui s’en va durant le décollage : autant d’incidents qui n’ont jamais provoqué que des dégâts sur l’avion et des blessés légers, mais qui ternissent l’image du constructeur américain.

La crise du 737 Max avait déjà conduit à la démission du patron de Boeing en 2019. Dennis Muilenburg... Poursuivre la lecture

Cet article est le premier d'une série de quatre articles. Voici les liens vers la seconde, la troisième et la quatrième partie.

 

Dans les débats sur la transition énergétique, la figure de Jean-Marc Jancovici est incontournable : à l'écouter, si nous voulons limiter les dégâts, il est urgent de réduire notre consommation d'hydrocarbures, et dans tous les cas, ceux-ci ne seront plus aussi abondants que par le passé. Par exemple, il aime répéter que le pic de production mondiale du pétrole conventionnel a été atteint en 200... Poursuivre la lecture

Voir plus d'articles